[Guest Post] อาลีบาบาคาดการณ์ 10 อันดับเทรนด์เทคโนโลยีพุ่งแรง

Alibaba DAMO Academy (DAMO) สถาบันเพื่อการวิจัยด้านเทคโนโลยีและวิทยาศาสตร์ระดับโลกของอาลีบาบา กรุ๊ป นำเสนอการคาดการณ์แนวโน้มสำคัญที่จะกำหนดทิศทางของอุตสาหกรรมเทคโนโลยี

DAMO นำเสนอแนวโน้ม 10 อันดับเทคโนโลยีสำคัญที่จะเกิดขึ้นในช่วงสองถึงห้าปีข้างหน้า ซึ่งได้จากการวิเคราะห์เอกสารที่ตีพิมพ์เผยแพร่สู่สาธารณะ การยื่นจดทะเบียนสิทธิบัตรในช่วงสามปีที่ผ่านมา และการสัมภาษณ์นักวิทยาศาสตร์เกือบ 100 คน ทำให้สามารถคาดการณ์ได้ว่าเราจะได้เห็นการพัฒนาที่ก้าวหน้าอย่างรวดเร็ว ซึ่งจะส่งผลกระทบต่อเศรษฐกิจและสังคมทุกภาคส่วนในวงกว้าง

นายเจฟฟ์ จาง Head of Alibaba DAMO Academy กล่าวว่า “ตลอดศตวรรษที่ผ่านมา วิวัฒนาการทางเทคโนโลยีดิจิทัลต่าง ๆ เป็นปัจจัยเร่งให้เกิดความก้าวหน้าทางดิจิทัลและการพัฒนาอุตสาหกรรมอย่างรวดเร็ว  การนำเทคโนโลยีไปใช้ได้ขยายขอบเขตจากโลกทางกายภาพไปสู่โลกที่ผสมผสานระหว่างโลกจริงกับโลกเสมือนเข้าด้วยกัน (mixed reality: MR) ในขณะเดียวกันก็มีการนำเทคโนโลยีที่ล้ำสมัยไปใช้ประโยชน์ในภาคอุตสาหกรรมมากขึ้นเรื่อย ๆ

“เทคโนโลยีดิจิทัลมีบทบาทสำคัญในการขับเคลื่อนอนาคตที่ยั่งยืนและเป็นมิตรกับสิ่งแวดล้อม ไม่ว่าจะเป็นการนำไปใช้ในอุตสาหกรรมใด เช่น ดาต้าเซ็นเตอร์ที่เป็นมิตรต่อสิ่งแวดล้อม และการผลิตที่ประหยัดพลังงาน หรือในกิจกรรมประจำวัน เช่น สำนักงานไร้กระดาษ เป็นต้น อาจกล่าวได้ว่าเราจะสร้างอนาคตที่ดีขึ้นได้ด้วยเทคโนโลยี”

คาดการณ์แนวโน้มสำคัญ: ในอีกสองปีถึงห้าปีข้างหน้าจะมีแอปพลิเคชันที่ทำงานอยู่บนระบบการประมวลผลแบบใหม่เพิ่มขึ้นอย่างรวดเร็ว ดังนี้

#1 Cloud-Network-Device Convergence 

การพัฒนาอย่างรวดเร็วของเทคโนโลยีด้านเครือข่ายใหม่ ๆ จะขับเคลื่อนวิวัฒนาการของคลาวด์คอมพิวติ้ง ไปสู่ระบบการประมวลผลแบบใหม่ ที่เป็นการรวมอุปกรณ์เครือข่ายบนคลาวด์เข้าไว้ด้วยกัน ซึ่งคลาวด์
เน็ตเวิร์ก และอุปกรณ์ต่าง ๆ ในระบบใหม่นี้จะมีการแบ่งงานที่ชัดเจนยิ่งขึ้น  การรวมเครือข่ายระบบคลาวด์
ไว้ด้วยกันจะเป็นตัวเร่งผลักดันให้เกิดแอปพลิเคชันใหม่ ๆ เพื่อตอบสนองงานที่มีความต้องการมากขึ้น เช่น การจำลองทางอุตสาหกรรมที่มีความแม่นยำสูง การตรวจสอบคุณภาพทางอุตสาหกรรมแบบเรียลไทม์ และ mixed reality  ในอีก 2 ปีข้างหน้า เราคาดว่าจะได้เห็นแอปพลิเคชันที่ทำงานบนระบบประมวลผลใหม่เพิ่มขึ้นอย่างรวดเร็ว

ในอีกสามปีข้างหน้า เราคาดว่าจะได้เห็นการนำ AI ไปใช้อย่างกว้างขวางในทุกด้าน ไม่ว่าจะเป็นกระบวนการวิจัยด้านวิทยาศาสตร์ประยุกต์ การใช้ชิปซิลิคอนโฟโตนิคที่ส่งข้อมูลด้วยแสง (Silicon Photonic Chips) การใช้ AI ปูทางไปสู่การรวมแหล่งพลังงานหมุนเวียนเข้ากับโครงข่ายไฟฟ้า การรักษาแบบแม่นยำจำเพาะที่เน้นผู้ป่วยเป็นศูนย์กลางในการรักษา (people-centric precision medicine) ที่กำลังเป็นเทรนด์สำคัญ การปรับปรุงที่ก้าวล้ำด้านประสิทธิภาพและความสามารถในการเข้าใจการประมวลผลแบบรักษาความเป็นส่วนตัว รวมถึงแว่นตา XR รุ่นใหม่ที่รวมองค์ประกอบของ VR และ AR เพื่อแสดงภาพดิจิทัลเหนือสภาพแวดล้อมจริง เป็นต้น

#2 AI for Science (AI กับการพัฒนาทางวิทยาศาสตร์)

เมื่อหลายร้อยปีที่ผ่านมา ชุมชนวิทยาศาสตร์มีกระบวนทัศน์พื้นฐานสองประการ ได้แก่ วิทยาศาสตร์เชิงทดลองและวิทยาศาสตร์เชิงทฤษฎี  ทุกวันนี้ความก้าวหน้าของ AI ทำให้กระบวนทัศน์ทางวิทยาศาสตร์
ใหม่ ๆ เป็นไปได้  แมชชีนเลิร์นนิ่งสามารถประมวลผลข้อมูลจำนวนมากที่มีหลากหลายมิติและในหลายรูปแบบ พร้อมแก้ไขปัญหาทางวิทยาศาสตร์ที่ซับซ้อนได้ ช่วยให้การค้นคว้าทางวิทยาศาสตร์เติบโตขึ้นในเรื่องที่เคยคิดว่าเป็นไปไม่ได้  ไม่เพียงแต่ AI จะเป็นตัวเร่งให้การวิจัยทางวิทยาศาสตร์รวดเร็วขึ้นเท่านั้น
แต่ยังช่วยในการค้นพบกฎทางวิทยาศาสตร์ใหม่ ๆ อีกด้วย  ในอีก 3 ปีข้างหน้า เราคาดว่าจะมีการนำ AI ไปใช้อย่างกว้างขวางในกระบวนการวิจัยทางวิทยาศาสตร์ประยุกต์ และใช้เป็นเครื่องมือการผลิตในวิทยาศาสตร์พื้นฐานด้านต่าง ๆ

#3 Silicon Photonic Chips (ชิปซิลิคอนที่ส่งข้อมูลด้วยแสง) 

เมื่อขนาดของทรานซิสเตอร์ใกล้ถึงขีดจำกัดทางกายภาพ ความเร็วของการพัฒนาชิปอิเล็กทรอนิกส์จะไม่สามารถตอบสนองความต้องการด้านปริมาณข้อมูลที่เพิ่มขึ้นที่เกิดจากการเพิ่มขึ้นของการประมวลผลประสิทธิภาพสูงอีกต่อไป  silicon photonic chips ต่างจากชิปอิเล็กทรอนิกส์ตรงที่ใช้โฟตอน (photons) แทนอิเล็กตรอน (electrons) เพื่อส่งข้อมูล  โฟตอนจะไม่มีปฏิกิริยาโต้ตอบกันโดยตรง และสามารถเคลื่อนที่ในระยะทางที่ไกลกว่า ดังนั้น silicon photonic chips จึงสามารถเพิ่มความหนาแน่นในการประมวลผลและประสิทธิภาพในการใช้พลังงานให้สูงขึ้น  ส่วนการเติบโตของคลาวด์คอมพิวติ้งและ AI ก็ขับเคลื่อนการพัฒนาเทคโนโลยี silicon photonic chips อย่างรวดเร็ว  ในอีก 3 ปีข้างหน้า เราสามารถคาดหวังว่าจะได้เห็นการใช้ silicon photonic chips อย่างแพร่หลายในการรับส่งข้อมูลความเร็วสูงในดาต้าเซ็นเตอร์ขนาดใหญ่

#4 AI for Renewable Energy (AI กับพลังงานหมุนเวียน)

การพัฒนาอย่างรวดเร็วของเทคโนโลยีด้านพลังงานหมุนเวียน เช่น พลังงานลมและพลังงานแสงอาทิตย์ในช่วงไม่กี่ปีที่ผ่านมา ทำให้พลังงานหมุนเวียนเป็นแหล่งพลังงานน่าสนใจที่จะเพิ่มเข้าไปในโครงข่ายไฟฟ้า  อย่างไรก็ตาม ปัญหาต่าง ๆ เช่น ความยุ่งยากในการรวมระบบโครงข่าย อัตราการใช้พลังงานต่ำ และการจัดเก็บพลังงานส่วนเกิน ล้วนเป็นอุปสรรคใหญ่ในการดำเนินการ  เนื่องจากลักษณะที่คาดเดาไม่ได้ของการผลิตไฟฟ้าพลังงานหมุนเวียน และการรวมแหล่งพลังงานหมุนเวียนเข้ากับโครงข่ายไฟฟ้า ทำให้เกิดความท้าทายที่ส่งผลต่อความปลอดภัยและความน่าเชื่อถือของโครงข่ายไฟฟ้า  การประยุกต์ใช้ AI ในภาคอุตสาหกรรมจึงมีความสำคัญยิ่งต่อการปรับปรุงประสิทธิภาพ และระบบอัตโนมัติของระบบไฟฟ้ากำลัง ตลอดจนการใช้ทรัพยากรให้เกิดประโยชน์สูงสุดและมีเสถียรภาพ  ซึ่งจะเอื้อให้บรรลุเป้าหมาย carbon neutrality ที่จะไม่ปล่อยก๊าซเรือนกระจกสู่ชั้นบรรยากาศเพิ่มขึ้น  ในอีก 3 ปีข้างหน้า คาดว่าจะมีการนำ AI ไปใช้เพื่อปูทางไปสู่การรวมแหล่งพลังงานหมุนเวียนเข้ากับโครงข่ายไฟฟ้า ตลอดจนมีส่วนสนับสนุนในการดำเนินงานของโครงข่ายไฟฟ้าที่ปลอดภัย มีประสิทธิภาพ และเชื่อถือได้

#5 High-precision Medicine (การรักษาแบบแม่นยำและจำเพาะสูง) 

การแพทย์เป็นเรื่องที่ต้องอาศัยความเชี่ยวชาญเฉพาะของแต่ละบุคคลเป็นอย่างมาก และมักจะเกี่ยวข้องกับการลองผิดลองถูกอย่างสูง และท้ายที่สุดอาจมีประสิทธิภาพแตกต่างกันไปตามผู้ป่วยแต่ละราย  เป็นที่
คาดกันว่าการนำ AI มารวมกับการรักษาที่แม่นยำ จะช่วยกระตุ้นการบูรณาการความเชี่ยวชาญและเทคโนโลยีการวินิจฉัยใหม่ ๆ เพิ่มขึ้น และทำหน้าที่เป็นเข็มทิศนำทางที่มีความแม่นยำสูงสำหรับเวชศาสตร์คลีนิก  ซึ่งแพทย์สามารถใช้เข็มทิศนี้วินิจฉัยโรคและตัดสินใจทางการแพทย์ได้อย่างรวดเร็วและแม่นยำที่สุดเท่าที่จะเป็นไปได้  ความก้าวหน้าเหล่านี้จะช่วยให้เราสามารถวัด คำนวณ คาดการณ์ และป้องกันโรคร้ายแรงได้  ในอีก 3 ปีข้างหน้าเราคาดว่า จะได้เห็นการรักษาแบบแม่นยำและจำเพาะโดยอาศัยข้อมูลทางพันธุกรรม หรือข้อมูลในระดับโมเลกุลมาใช้ในการตรวจวินิจฉัยที่เน้นผู้ป่วยเป็นศูนย์กลางในการรักษา ซึ่งจะกลายเป็นเทรนด์สำคัญที่ครอบคลุมการดูแลสุขภาพในด้านต่าง ๆ รวมถึงการป้องกัน การวินิจฉัย และการรักษาโรค  AI จะเปรียบเสมือนกับเข็มทิศที่มีความแม่นยำสูง ที่จะช่วยให้เราสามารถระบุโรคและการรักษาได้

#6 Privacy-preserving Computation (การประมวลผลแบบรักษาความเป็นส่วนตัว)

เนื่องจากข้อจำกัดด้านประสิทธิภาพ การขาดความมั่นใจในเทคโนโลยี และข้อกังวลด้านมาตรฐานต่าง ๆ ทำให้การประยุกต์ใช้การประมวลผลเพื่อรักษาความเป็นส่วนตัว ถูกจำกัดให้อยู่ในขอบเขตแคบ ๆ ของการประมวลผลที่มีขนาดเล็กมาตลอด  อย่างไรก็ตาม เนื่องจากเทคโนโลยีมีการบูรณาการมากขึ้นเรื่อย ๆ เช่น ชิปที่มีการทำงานเฉพาะ อัลกอริธึมการเข้ารหัส การใช้งานไวท์บ็อกซ์ (whitebox) ที่เป็นคอมพิวเตอร์ส่วนบุคคลหรือเซิร์ฟเวอร์ประกอบเองที่ไม่มีแบรนด์ รวมถึงความน่าเชื่อถือของข้อมูล ฯลฯ กำลังเกิดขึ้น ดังนั้น
จึงจะมีการประมวลผลแบบรักษาความเป็นส่วนตัวนำมาใช้ในสถานการณ์ต่าง ๆ เช่น การประมวลผลข้อมูลจำนวนมหาศาล และการผสานรวมข้อมูลจากทุกโดเมน ซึ่งเป็นความก้าวหน้าที่เกิดจากการประมวลผลข้อมูลจำนวนเล็กน้อย และข้อมูลจากโดเมนส่วนตัวเข้าไว้ด้วยกัน  การนำไปใช้งานจะเพิ่มประสิทธิภาพการทำงานใหม่ที่ขับเคลื่อนโดยข้อมูลจากทุกโดเมน  ในอีก 3 ปีข้างหน้าเราจะเห็นการปรับปรุงที่ก้าวล้ำด้านประสิทธิภาพ และความสามารถในการเข้าใจการประมวลผลแบบรักษาความเป็นส่วนตัว และจะได้เห็นหน่วยงานด้านความน่าเชื่อถือของข้อมูลที่ให้บริการแบ่งปันข้อมูลต่าง ๆ ผ่านการใช้เทคโนโลยีเพิ่มขึ้น

#7 Extended Reality: XR (เทคโนโลยีโลกเสมือนจริง – XR)

การพัฒนาเทคโนโลยี เช่น การประมวลผลแบบเอดจ์บนคลาวด์ การเชื่อมต่อเครือข่าย และดิจิทัลทวิน
ทำให้เทคโนโลยี XR เติบโตเต็มที่  แว่นตา XR ให้คำมั่นที่จะทำให้โลกเสมือนบนอินเทอร์เน็ตใกล้ความ
เป็นจริงมากที่สุด  นวัตกรรมนี้ได้หว่านเมล็ดพันธุ์ที่จะแตกหน่อในระบบนิเวศอุตสาหกรรมใหม่ ที่รวมถึงส่วนประกอบอิเล็กทรอนิกส์ อุปกรณ์ ระบบปฏิบัติการ และการใช้งานในด้านต่าง ๆ  เทคโนโลยี XR จะเปลี่ยนโฉมแอปพลิเคชันดิจิทัล และปฏิวัติวิธีที่ผู้คนมีส่วนร่วมกับเทคโนโลยีในเรื่องต่าง ๆ เช่น ความบันเทิง โซเชียลเน็ตเวิร์ก ออฟฟิศ ช็อปปิ้ง การศึกษา และการดูแลสุขภาพ ฯลฯ  ในอีก 3 ปีข้างหน้า เราคาดว่าจะได้เห็นแว่นตา XR รุ่นใหม่ที่มีรูปลักษณ์ และให้ความรู้สึกที่ไม่ผิดเพี้ยนไปจากแว่นตาทั่วไปออกสู่ตลาด และจะเป็นจุดเริ่มต้นที่สำคัญสู่อินเทอร์เน็ตในยุคต่อไป 

#8 Perceptive Soft Robotics

หุ่นยนต์นิ่ม (Perceptive Soft Robotics) แตกต่างจากหุ่นยนต์ทั่วไป ตรงที่มีส่วนต่าง ๆ ที่ยืดหยุ่นได้ และมีความสามารถในการรับรู้ต่อแรงกด การมองเห็น และเสียง  หุ่นยนต์เหล่านี้ใช้ประโยชน์จากเทคโนโลยีต่าง ๆ ที่ล้ำสมัย เช่น อุปกรณ์อิเล็กทรอนิกส์ที่ยืดหยุ่นได้ วัสดุที่รองรับแรงกด และ AI ซึ่งช่วยให้ทำงานพิเศษและงานที่มีความซับซ้อนสูง อีกทั้งยังสามารถเปลี่ยนรูปเพื่อปรับให้เข้ากับสภาพแวดล้อมทางกายภาพที่แตกต่างกันได้  การเกิดขึ้นของหุ่นยนต์นิ่มจะช่วยเปลี่ยนทิศทางของอุตสาหกรรมการผลิต ตั้งแต่การผลิตสินค้ามาตรฐานจำนวนมาก ไปจนถึงสินค้าเฉพาะกลุ่มที่มีการผลิตจำนวนน้อย  ในอีก 5 ปีข้างหน้า จะมีการนำหุ่นยนต์นิ่มมาใช้แทนที่หุ่นยนต์ทั่วไปในอุตสาหกรรมการผลิต และปูทางไปสู่การใช้เป็นหุ่นยนต์บริการในชีวิตประจำวันมากขึ้น 

#9 Satellite-terrestrial Integrated Computing (การประมวลผลแบบบูรณาการผ่านดาวเทียมและภาคพื้นดิน – STC)

เครือข่ายภาคพื้นดินและระบบการประมวลผลมีการให้บริการดิจิทัลสำหรับพื้นที่ที่มีประชากรหนาแน่น แต่จะไม่มีบริการในพื้นที่ที่มีประชากรเบาบาง เช่น ทะเลทราย ทะเล และอวกาศ เป็นต้น  STC จะเชื่อมต่อกับดาวเทียมแบบ High-Earth Orbit (HEO) ที่มีวงโคจรสูง และแบบ Low-Earth Orbit (LEO) ที่มีวงโคจรต่ำ และเครือข่ายการสื่อสารเคลื่อนที่ภาคพื้นดิน ครอบคลุมไร้รอยต่อในทุกมิติ  นอกจากนี้ STC ยังสร้างระบบประมวลผลที่รวมดาวเทียม เครือข่ายดาวเทียม ระบบสื่อสารภาคพื้นดิน และเทคโนโลยีคลาวด์คอมพิวติ้งเข้าไว้ด้วยกัน  ซึ่งจะทำให้เกิดการเข้าถึงบริการดิจิทัลได้มากขึ้น และครอบคลุมทั่วโลก  ในอีก 5 ปีข้างหน้า ดาวเทียมและระบบภาคพื้นดินจะทำงานร่วมกันเป็นโหนดการประมวลผล เพื่อสร้างระบบเครือข่ายแบบครบวงจรที่ให้การเชื่อมต่อทั่วทุกพื้นที่

และยิ่งไปกว่านั้น เราคาดหวังว่าในอนาคต AI จะเปลี่ยนไปเป็นวิวัฒนาการร่วมกันของโมเดลขนาดใหญ่และขนาดเล็ก ผ่านระบบคลาวด์ เอดจ์ และอุปกรณ์ต่าง ๆ 

#10 วิวัฒนาการร่วมของโมเดล AI ขนาดใหญ่และขนาดเล็ก 

โมเดลก่อนการฝึกอบรม หรือที่เรียกกันว่าโมเดลพื้นฐาน เป็นเทคนิคก้าวล้ำในการพัฒนาพื้นฐานตั้งแต่ AI เฉพาะทาง (Weak AI) ที่มีความสามารถเฉพาะด้าน ไปจนถึง AI ทั่วไป (General AI) ที่มีความสามารถดัดแปลงความรู้และทักษะได้ระดับหนึ่ง ซึ่งจะช่วยเพิ่มประสิทธิภาพของแอปพลิเคชันต่าง ๆ โดยใช้การเรียนรู้เชิงลึกที่เป็นมาตรฐาน  อย่างไรก็ตาม ข้อดีในด้านประสิทธิภาพที่สูงขึ้น และข้อเสียในด้านการใช้พลังงานนั้นไม่สมดุลกัน จึงทำให้การสำรวจโมเดลขนาดใหญ่มีข้อจำกัด  AI ในอนาคตกำลังเปลี่ยนจากการแข่งขันด้านความสามารถในการปรับขนาดของโมเดลพื้นฐาน ไปสู่การพัฒนาร่วมกันของโมเดลขนาดใหญ่และขนาดเล็ก ผ่านระบบคลาวด์ เอดจ์ และอุปกรณ์ต่าง ๆ ซึ่งเป็นประโยชน์มากกว่าในทางปฏิบัติ

กรุณาเข้าชมข้อมูลเพิ่มเติมในรายงานฉบับเต็มได้ที่นี่ 

 
เกี่ยวกับ Alibaba DAMO Academy
Alibaba DAMO Academy ก่อตั้งขึ้นเมื่อวันที่ 11 ตุลาคม 2560 มีเป้าหมายเพื่อสำรวจสิ่งที่ไม่รู้จัก ผ่านการวิจัย นวัตกรรมทางวิทยาศาสตร์ และเทคโนโลยี แรงผลักดันเบื้องหลัง Academy คือการแสวงหาความเป็นอยู่ที่ดีขึ้นของมนุษยชาติ

About Maylada

Check Also

พารู้จัก Gemini ในแง่มุมจากผู้สร้าง จาก Google Cloud APAC Media Summit 2024 วันที่ 1

ช่วงกลางเดือนที่แล้ว ทีมงาน TechTalkThai ได้มีโอกาสไปร่วมงาน “Google Cloud APAC Media Summit” ที่จัดขึ้นใน ณ สำนักงาน Google Cloud ที่ประเทศสิงคโปร์ …

Amazon เตรียมลงทุนเพิ่มก้อนใหญ่ใน Anthropic คู่แข่ง OpenAI

มีรายงานว่า Amazon กำลังวางแผนลงทุนครั้งใหญ่ใน Anthropic PBC สตาร์ทอัพด้าน Gen AI จากซานฟรานซิสโกและคู่แข่งสำคัญของ OpenAI เป็นการสานต่อการสนับสนุนมูลค่า 4 พันล้านดอลลาร์จากบริษัทเมื่อปี 2023